Self-Oscillating CMOS Class D Amplifier Optimized for Low Output Power

نویسنده

  • Daniel J. White
چکیده

Advisor: l\[ichacl Hoffman The continual push for smaller size and decreased power consumption has prompted the adoption of class D amplification for speaker and headphone drivers in portable media devices. \Vith proper design, the power efficiency of this amplifier type can exceed any other topology over the whole output range, even at low output levels. Simple amplifier topologies arc not the norm for these integrated circuit (IC) class D amplifiers. This thesis shows that such complexity is not necessary for good performance. A recently presented simple self-oscillating topology is mapped into a standard C;\[OS technology and fabricated in a 0.5 micron process. The output stage is optimized for a range of modulation indices, simultaneously increasing average efficiency and reducing chip area. Modifications arc presented that reduce the large transient currents inherent in C.MOS inverter chains without increasing implementation complexity. Also, changes to the optimization procedure arc presented that make the results more relevant to low-power, self-oscillating topologies. Test results arc compared to predicted and simulated values. This thesis shows that design complexity is not requisite for good performance awl high efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A W-band Simultaneously Matched Power and Noise Low Noise Amplifier Using CMOS 0.13µm

A complete procedure for the design of W-band low noise amplifier in MMIC technology is presented. The design is based on a simultaneously power and noise matched technique. For implementing the method, scalable bilateral transistor model parameters should be first extracted. The model is also used for transmission line utilized in the amplifier circuit. In the presented method, input/output ma...

متن کامل

A Novel Low Voltage, Low Power and High Gain Operational Amplifier Using Negative Resistance and Self Cascode Transistors

In this work a low power, low voltage and high gain operational amplifier is proposed. For this purpose a negative resistance structure is used in parallel with output to improve the achievable gain. Because of using self cascode transistors in the output, the proposed structure remains approximately constant in a relatively large output voltage swing causing an invariable gain. To evaluate the...

متن کامل

A 28-36 GHz Optimized CMOS Distributed Doherty Power Amplifier with A New Wideband Power Divider Structure

Background and Objectives: In this paper, a new design strategy was proposed in order to enhance bandwidth and efficiency of power amplifier. Methods: To realize the introduced design strategy, a power amplifier was designed using TSMC CMOS 0.18um technology for operating in the Ka band, i.e. the frequency range of 26.5-40GHz. To design the power amplifier, first a power divider (PD) with a ver...

متن کامل

A Low-Voltage, Low-Power, Two-Stage Amplifier for Switched-Capacitor Applications in 90 nm CMOS Process

Abstract- A novel low-voltage two-stage operational amplifier employing resistive biasing is presented. This amplifier implements neutralization and correction common mode stability in second stage while employs capacitive dc level shifter and coupling between two stages. The structure reduces the power consumption and increases output voltage swing. The compensation is performed by simple mill...

متن کامل

Analysis and Design of High Gain, and Low Power CMOS Distributed Amplifier Utilizing a Novel Gain-cell Based on Combining Inductively Peaking and Regulated Cascode Concepts

In this study an ultra-broad band, low-power, and high-gain CMOS Distributed Amplifier (CMOS-DA) utilizing a new gain-cell based on the inductively peaking cascaded structure is presented. It is created bycascading of inductively coupled common-source (CS) stage and Regulated Cascode Configuration (RGC).The proposed three-stage DA is simulated in 0.13 μm CMOS process. It achieves flat and high ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015